maquinas simples
jueves, 27 de febrero de 2014
CONCLUCIONES
En si este tema que va relacionado con la asignatura de fisica 3 en el cual el trabajo encargado fue hacer un blog que hablara hacerca de las maquinas simples y pues ami me parecio muy interesante ya que el hombre no creo las maquinas simples en la misma fecha y sobre todo las maquinas simples no son un lujo si no una necesidad que el mismo hombre a estado evolucionando para no aplicar tanto esfuerzo y se le haga mas facil.
CARRETILLA
Las hay de varios tipos: La carretilla de una sola rueda frontal está diseñada para distribuir el peso de la carga entre la rueda y el trabajador, lo que permite llevar cargas más pesadas que si tuvieran que ser transportadas totalmente por la persona. Se utiliza comúnmente en la industria de la construcción y en jardinería. Su capacidad aproximada es de 170 kilos de material.
La carretilla de dos ruedas, más estable a nivel del suelo, es ampliamente usada para cargar cajas u otras cosas que se puedan apilar, mientras que la casi universal de una rueda tiene mayor maniobrabilidad en espacios pequeños, sobre tablones de madera o cuando un suelo inclinado tiraría la carga. La de una rueda también permite mayor control de vaciado de carga.
La carretilla industrial, más sofisticada, cuenta con sistema de suspensión hidráulico, dos largueros, cada uno con una pequeña rueda y otro par de ruedas frontales giratorias. Esta última se utiliza para carga más pesada y en el comercio sirve para el transporte de electrodomésticos.
Las primeras ilustraciones de carretillas de una rueda proceden la dinastía Han de China en el siglo II A.D. y fueron encontradas en murales de tumbas y relieves en tumbas de ladrillo. El mural pintado en una tumba mostrando un hombre empujando una carretilla fue encontrado en Chengdu, provincia de Sichuan y datado exactamente el 118 a. C. Otro relieve labrado en piedra mostrando la misma escena se encontró en la tumba de Shen Fujun en la provincia de Sichuan, fechado alrededor de 150 A.D. El mural del santuario de Wu Liang, en Shandong (datado el 147 A.D.) muestra la historia del pío Dong Yuan, llevando a su padre en una carretilla de una rueda, lu che. Sin embargo existen registros aún más antiguos que se remontan al siglo I a. C. y I A.D.
PLANO INCLINADO
Plano Inclinado.- Es todo plano que forma con la horizontal un ángulo menor a los 90º. Mediante el plano inclinado se elevan a la altura deseada objetos que no podrían izarse directamente sin emplear fuerzas muy superiores.
La resistencia R es el peso del cuerpo, que recorre en su dirección el camino BC (altura del plano inclinado), mientras el camino de la fuerza F es a el largo AB del plano.
La resistencia R se descompone en dos fuerzas: una normal al plano N, que se destruye contra él, y otra F´ paralela, que se equilibra con la fuerza motriz igual y opuesta. Por semejanza de triángulos: F´/R=BC/AB.
Para analizar las fuerzas existentes sobre un cuerpo situado sobre un plano inclinado, hay que tener en cuenta la existencia de varios orígenes en las mismas.
- En primer lugar se debe considerar la existencia de una fuerza de gravedad, también conocida como peso, que es consecuencia de la masa(M) que posee el cuerpo apoyado en el plano inclinado y tiene una magnitud de M.g con una dirección vertical y representada en la figura por la letra G.
- Existe además una fuerza normal (N), también conocida como la fuerza de reacción ejercida sobre el cuerpo por el plano como consecuencia de la tercera ley de Newton, se encuentra en una dirección perpendicular al plano y tiene una magnitud igual a la fuerza ejercida por el plano sobre el cuerpo. En la figura aparece representada por N y tiene la misma magnitud que F2= M.g.cosα y sentido opuesto a la misma.
- Existe finalmente una fuerza de rozamiento, también conocida como fuerza de fricción (FR), que siempre se opone al sentido del movimiento del cuerpo respecto a la superficie, su magnitud depende tanto del peso como de las características superficiales del plano inclinado y la superficie en contacto del cuerpo que proporcionan un coeficiente de rozamiento. Esta fuerza debe tener un valor igual a F1=M.g.senα para que el cuerpo se mantenga en equilibrio. En el caso en que F1 fuese mayor que la fuerza de rozamiento el cuerpo se deslizaría hacia abajo por el plano inclinado. Por tanto para subir el cuerpo se debe realizar una fuerza con una magnitud que iguale o supere la suma de F1 + FR.
POLEA
Polea.- Dispositivo mecánico de tracción o elevación, formado por una rueda o roldana montada en un eje, con una cuerda que rodea la circunferencia de la rueda. Tanto la polea como la rueda y el eje pueden considerarse máquinas simples que constituyen casos especiales de la palanca. Una polea fija no proporciona ninguna ventaja mecánica, es decir, ninguna ganancia en la transmisión de la fuerza: sólo cambia la dirección o el sentido de la fuerza aplicada a través de la cuerda, mientras una polea móvil disminuye la mitad del peso del cuerpo.
A.- Polea fija
Aplicando momentos respecto a O (ver figura 9.8.), tenemos:
F1r=F2rsiendo r el radio de la polea,con lo que simplificamos: F1=F2
"La fuerza motriz y la resistencia son iguales, así como el camino recorrido por ambas"
B.- Polea móvil
Va casi siempre acompañada de una polea fija, pero ésta no cuenta por no alterar la fuerza.
Aplicando la ley de la palanca:
F*OC=R*OA
Por semejanza de triángulos: OA/OC=OD/OB Luego F/R=OD/OB
Que se enuncia "Fuerza es a resistencia como radio de la polea es a cuerda abrazada por el cordón"
TORNILLO
Tornillo.- Dispositivo mecánico de fijación, por lo general metálico, formado esencialmente por un plano inclinado enroscado alrededor de un cilindro o cono. Las crestas formadas por el plano enroscado se denominan filetes, y según el empleo que se les vaya a dar pueden tener una sección transversal cuadrada, triangular o redondeada. La distancia entre dos puntos correspondientes situados en filetes adyacentes se denomina paso. Si los filetes de la rosca están en la parte exterior de un cilindro, se denomina rosca macho o tornillo, mientras que si está en el hueco cilíndrico de una pieza se denomina rosca hembra o tuerca. Los tornillos y tuercas empleados en máquinas utilizan roscas cilíndricas de diámetro constante, pero los tornillos para madera y las roscas de tuberías tienen forma cónica.
El empleo del tornillo como mecanismo simple (en ese caso también se denomina husillo o tornillo sin fin) aprovecha la ganancia mecánica del plano inclinado. Esta ganancia aumenta por la palanca que se suele ejercer al girar el cilindro, pero disminuye debido a las elevadas pérdidas por rozamiento de los sistemas de tornillo. Sin embargo, las fuerzas de rozamiento hacen que los tornillos sean dispositivos de fijación eficaces.
TORNO
Torno.- Formada por dos ruedas o cilindros concéntricos de distinto tamaño y que suele transmitir la fuerza a la carga por medio de una cuerda arrollada alrededor del cilindro mayor; en la mayoría de las aplicaciones la rueda más pequeña es el eje. El torno combina los efectos de la polea y la palanca al permitir que la fuerza aplicada sobre la cuerda o cable cambie de dirección y aumente o disminuya.
Un torno puede emplearse para levantar un objeto pesado, como el cubo de un pozo. A veces, el torno es simplemente un eje con una manivela. La rueda exterior o la manivela son concéntricos con la rueda interior o el eje. Una fuerza relativamente pequeña aplicada a la rueda grande puede levantar una carga pesada colgada de la rueda pequeña. Por tanto, el torno actúa como una palanca de primera clase donde el eje constituye el punto de apoyo y los radios de ambas ruedas los respectivos brazos de palanca. El principio de la palanca afirma que FR = fr, donde F y f son las fuerzas aplicadas, y R y r los respectivos brazos de palanca. Por ejemplo, si el radio de la manivela es 10 veces mayor que el del eje, la fuerza ejercida sobre la carga es 10 veces mayor que la aplicada a la manivela.
Se compone de un cilindro de radio r, con una cuerda que arrastra una resistencia R, y un manubrio de longitud m,en donde se aplica la fuerza F.
Por la ley de la palanca, en el equilibrio:
F/R=r/m
PALANCA
Palanca.- Es una barra rígida que puede girar libremente alrededor de un punto de apoyo o de un eje, por la acción de dos fuerzas, la resistencia y la potencia y que se usa para mover cargas pesadas.
Arquímedes, descubrió la ley de la palanca y dijo “Dadme una palanca y un punto de apoyo y moveré el mundo”.
La barra rota alrededor de un punto fijo llamado punto de apoyo o fulcro. El punto de aplicación de la resistencia es el lugar donde se ubica la carga a mover. El punto donde se aplica la fuerza para mover la carga es el punto de aplicación de la potencia. Cuanto más cerca de la carga esté el fulcro, menor fuerza se realiza para mover la carga.
La fuerza rotatoria es directamente proporcional a la distancia entre el fulcro y la fuerza aplicada. Por ejemplo, una masa de 1 Kg que está a 2 m del fulcro equivale a una masa de 2 Kg a una distancia de 1 m del fulcro.
Los elementos de una palanca son:
a) Punto de apoyo (O).
b) Resistencia (Q) = Fuerza que se quiere vencer.
c) Potencia (F) = Fuerza que se aplica.
d) Brazo de resistencia (bQ) = distancia desde el punto de apoyo a la recta de acción de la resistencia.
e) Brazo de potencia (bF) = distancia desde el punto de apoyo a la recta de acción de la potencia.
El momento de la resistencia tiende a producir una rotación de la barra en sentido contrario a las agujas de un reloj, mientras que el momento de la potencia trata de efectuar la rotación en el mismo sentido que dichas agujas.
En consecuencia:
Mq= Q.bQ y Mf= -F.bF
Géneros de palanca
Palanca de primer género:
Una palanca es de primer género cuando el punto de apoyo está ubicado entre la resistencia y la potencia.
2) Palanca de segundo género:
Una palanca es de segundo género cuando la resistencia se halla entre el punto de apoyo y la potencia.
Como en las palancas de segundo género el brazo de potencia es siempre mayor que el brazo de resistencia, en todas ellas se gana fuerza.
Palanca de tercer género:
Cuando la potencia se encuentra entre el punto de apoyo y la resistencia, la palanca es de tercer genero.
En este género de palancas, el brazo de potencia siempre es menor que el brazo de resistencia y, por lo tanto, la potencia es mayor que la resistencia. Entonces, siempre se pierde fuerza pero se gana comodidad.
Suscribirse a:
Entradas (Atom)